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APPENDIX C. ESTIMATING THE WAITING TIME UNTIL THE SIMULTANEOUS
COLLAPSE OF TWO CONTINGENCIES’

(Adapted from Author’s Text)

C. 1 Introduction. This appendix provides an interface between criticality safety and safety analysis.

Recent emphasis calls for probabilistic safety assessments in addition to the traditional qualitative

and quantitative, but deterministic, assessments. That emphasis supplies the motive for this

appendix, which is narrowly focused on the Double-Contingency Principle (DCP) as applied in

criticality safety practice.

C.1.1 DCP Review. The definition of the DCP is stated as, “Process designs shall, in general,

incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent

changes ill process col~ditlons before a criticality accident is possible. ” For example, given a fissile
material workstation in a glovebox, the “two unlikely” events are inadvertent double-batching and
inadvertent flooding with water. In this example, work begins at the workstation at time zero. The

purpose of this probabilistic model is to make a probabilistic statement about the waiting time until
the workstation is simultaneously flooded and double-batched.

C.1.2 Markov Model. A Markov model is convenient and tractable. In such a model, (1 ) the time
span from recovery from a flooded condition to onset of the next flooded condition is an
exponentially distributed random variable, (2) the time span from the onset of a flooded condition to
recovery from that flooded condition is an exponentially distributed random variable, and (3) those

two random variables are independent. A sinlilar set of statements applies to the double-batching
situation.

C. 1.3 Probabilistic Description. Given estimates of mean failure and mean recovery times of the

two independent contingencies, the model can be used to generate a probabilistic description of the
waiting time to the first simultaneous collapse; or, if estimates of mean failure and mean recovery

times of the two independent contingencies are unavailable, the model can be used to construct

parameter surveys to bound estimates that could satisfy a criterion for mean time to simultaneous

collapse.

C.2 General Markov Model. The construction of a Markov model for the general situation follows.
For k 1, 2, let X.(t) 1 if contingency k is in its desired state; let X,(t) = O if contingency k is in

its undesired state. Suppose that at time zero both contingencies are in the desired states:
X,(0) = 1 and X:,(0) = 1. For k = 1, 2, let 1 /Ak be the mean time between transitions from

desirable to undesirable states for the k’” contingency. Similarly, let 1 /#, be the mean time between

transition from undesirable to desirable states. If the Markov model is invoked, then the sojourns

between transitions are independent, exponentially distributed random variables. The process is

assumed to begin in state (1,1) (i. e., X,(t) = 1 and XJt) = 1 ). The waiting time until the first visit

to state (0,0) (i. e., X,(t) = O and Xz(t) = O) is to be determined. That waiting time is also a random

variable to be determined as follows.

The (0,0) state is that in which both contingencies are in undesired states, and in practice, is a state

from which exit is possible. However, it is convenient for modeling purposes to make (0,0) an

absorbing state, one from which exit is not possible. If state (0,0) is an absorbing state and T, a
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random variable, is the waiting time until the first visit to (0,0), given that the process begins in state

(1, 1); then for any t > 0, the events IT s t] and [X,(t) = O and Xz(t) = 01 are equivalent. That
equivalence simplifies the following mathematical demonstration.

Figure 1 displays a state transition diagram for the two-state Markov process. For i = 0,1 and

j = 0,1; let P,,(t) = P[X, (t) = i and X2(t) = j]. The incantation that corresponds to the right hand
side of the last definition is “probability that Xl at time t equals i and Xz at time t equals j.” Then
from the figure, the system of first order differential equations that the P,, satisfy is

dP, ,
— = -(~, +~2)p,, +Plpol+v2plo

d;.
— = -(11 +p2)P10+A2P11

d?
dPo,

= -( A** P,) F’0, +Alpll
‘-dt
dPoo
----..—— - A1p10 + AZPO1

dt “

Since the process begins in state (1,1), the initial conditions for system (1) are: P,,(0) = 1,
PIO(0) = o, PL, (0) = o, Puo(o) = 0,

Al
.
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Figure 1. The state transition diagram for the

Markov model of the double-contingency

stochastic process; “1 “ is a desirable state, and

“O” is all undesirable state.

The technique used for constructing a solution to system (1 ) is the Laplace
represent the Laplace transform operator, and for I = O, 1 and j

of L to system (1 ) yields

S+A1+A2 -IJ2 -W1 o

- A2 S+A1 +~2 o 0

- Al o s+ A2+p1 o

0 -Al -AZ SJ
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Solving system {2) for fOOyields:
fOO(s) = N(s)/D(s)

where

N(s) - (2A, A,,)S + (~, /t, /i, + /f, /i2A2 + ~1 ~2/u, + ~, A, /f,) (4)

and
D(s) = S[S3 + (2A, + 2A2 + /J, + ~,)sz + (A, A, + AZAZ + 3A,Az + A, /J, + ~,pz

+A2P, +A2P2+PZAJJS+ L4,A,4+A1&A~+A1Az J11+A1z4z/Iz)l (5)

Equations (4) and (5) are unnecessarily expanded to highlight the symmetry of the subscripts.

The Laplace transform of PIT s t] is fOO,and PIT s t] is the cumulative distribution function (CDF)

that describes T, the waitinct time until the simultaneous occurrence of the two contingencies.

(3)

Hence, a fundal~~ental prop~rty of LaPlace transforms and the fact that P[T s 01 =
f,,,(s) is the Laplace transform of d/dt PIT s t]. But d/dt PIT s t] is the probability
(PDF) tha~ describes T; let f, represent that PDF, and let g, - Lf,, Then from (3):

SN (s) . N(s)
(LfJ (s) = g,(s) = ~ - —

.“ D’ (S)

O imply that s

density function

(6)

where the last equation in (6) defines D+.

To invert g, requires finding roots of the cubic D’; the coefficients of D’ appear in (5), In application
where the J, and the M, are assigned numerical values, computer-based root finding routines could be
used; and f. could be found by inverting g,.

Although Inversion ot g. is unproductive in the general case, useful information can be extracted

from g, without [l~version. That is;
.

/
g,r (s) = ‘ fT( t) e-”’cit= (e-’T)

[)

where ( ) represents expectation. Hence g~ is a moment generating function for T. In particular,

exp(-st) is expanded in a Taylor series about O, it is found that (T) = -g “~ (0) where the prime
represents differentiation with respect to s. Differentiation and algebraic manipulation applied to

(4),(5), and (6) yields:

a,a, + I,:A, + ,1, AL + A,p, + A,~2 + lApi + Azp, + p,p2
t ‘1”

A,kl A, + AI A<A, + AI A;p, + a,k-,~,–----”--”

Equation (8) is presented in the expanded form to highlight the symmetry of the relationship.

A special case of (8) is enlightening. In practical cases, if application of the double contingency

principle is to yield significant safety advantage, the mean times of transition from desirable to

undesirable states should be much longer than the mean times of transition from undesirable to
desirable states. In the context of the model, this translates into the assertion that for every i =

2 and j = 1, 2, A, {{ u,. In Ibis special case (8) becomes
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(9)

The advantage to be gained by using two contingencies instead of one’ contingency is demonstrated
in the following quantitative estimate of examining the mean time to the first simultaneous
occurrence of two contingencies. Suppose 1 /A, = 5 years, 1IA, = 10 years, 1 Ifl, = 5 days, and

1 /~, = 2 days. Then equation (9) applies, and (T) = 2600 years; the advantage is substantial in this

case.

Equation 8 is provided for the general case and equation 9 is provided for the special (and usually
applicable) case.

C.3 Symmetric Case. The “symmetric case” is for circumstances in which both contingencies are

described by identical probabilistic models, i.e., A, = A2 = A and ,u, = Uz = H. The symmetric case
can be treated as above by starting with a state transition diagram and writing down the
corresponding first-order linear systelm of differential equations. The system is 3 x 3 matrix instead

of 4 x 4 matrix because the states (O, 1 ) and (1 ,0) are indistinguishable.

The symmetric case is logically equivalent to what reliability theorists call the two-unit-active-

redundant case, and it has been completely solvedzs and is provided as follows.

As before, let T be the waiting time until the first visit to state (0,0). Then for time t ~ 0,

02e -*’r - 131e-”’t
P[T>tj =

(o, -01)

where

(10)

(11)

(12)
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Equation (10) is a complete probabilistic description of T. To obtain a corresponding result for the

asymmetric case requires finding the roots of the cubic D’ defined in equation (6).

Although there is no simple equivalent of (1 O) for the asymmetric case, equation (1 O) may be

conservatively used in the asymmetric case by setting A = max(~l, ~z) and # = min(~l, LZ). Such an
application may be useful to gain quick insight and might even suffice without further analysis if the
result satisfies the preset criterion.
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2.
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